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CHAPTER I

Introduction

In this report, we consider an Ho-like problem on a finite horizon. In Chapter 2 a

problem with a restricted performance index is treated. We propose a worst-case optimal

controller, whereas the usual H. solutions yield suboptimal ones. The system considered is

linear time-varying and the expressions for the worst-case exogenous input and the optimal

controller are in terms of solutions of two dynamic Riccati equations in the case where the

initial state is nonzero. Also an expression for the optimal controller is obtained in this

case in terms of full state feedback. Since the procedure to obtain the optimal controller "s

a noniterative one, the computational time is greatly reduced. Also, a novel feature is the

derivation of a formula for the performance variation of the optimal controller in terms of

variations in the system matrices.

In Chapter 3 we consider a problem with a generalized performance index. \We develop

necessary conditions for a minimax problem involving control and exogenous inputs. Again

the problem can be regarded as a finite horizon version of the H. optimal control problem.

The emphasis is on the synthesis of optimal controllers whereas the usual H" methods

give conditions for the synthesis of suboptimal ones. Feedback controllers are developed

for the case of nonzero initial conditions. Also, expressions are derived for the variation in

performance in terms of system parameter variations. These linear expressions are useful

in the evaluation of the robustness of the proposed optimal control strategy.
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CHAPTER II

Worst-Case Optimal Control with a Restricted

Performance Criterion

1. INTRODUCTION

There are several recent papers attacking the H, problem from a state space point of

view and all of these obtain a characterization of suboptimal output-feedback controllers[1-

5]. The suboptimal controller is usually obtained by solving two Ricati equations. There

are also finite interval versions of these solutions and extensions have been made to the

linear time-varying case as well[4,5]. The state space approach has yielded new insights

into the features of the H, coAtroller, and one of these is the separation of the control

problem into a full state feedback design and an observer design.

In a different approach taken by this author[6-8], a measure of peformance is computed

for a given controller and nonlinear programming algorithms are utilized to find a controller

that optimizes the performance. This approach is suitable for extending the methodology

to solve problems involving convex functionals[9]. We have also applied the methodology

to solve model reduction problems[10]. One of the main advantages of this approach is

the quantification of variation in peformance when uncertainties are present in the system

matrices. However, it is tedious to compute the optimal controller in °his case because it

requires several iterations.

The main contribution of this report is the noniterative characterization of the optimal

controller. We consider a restricted performance criterion in Chapter 2 and a generalized

performance criterion in Chapter 3. The full state feedback solution in the nonzero initial

state case is in terms of two dynamic Riccati equations. The integration of these equations

is easy since only one of the Riccati equations depends on the solution of the other. Unlike

the usual approaches which yield suiboptimal controllers, our apl;;oach yields an optimal

2



NADC-91005-60

controller. Thus the need for iterative solution medhods like the -iteratioi is eliniinate(d.

Because of the dynamic Riccati equations, the control gain matrix will be time-varying even

when the system matrices are time-invariant. An important by-product of the approach is

a formula for the variation of performance in terms of variations in the system matrices.

These variations in performance are useful in evaluating the robustness of the proposed

controller.

2. PROBLEM FORMULATION

The lineax time-varying system is given by

x A(t)x + Bi(t)u + B2 (t)v, x(to) =xo, (1)

C(t)x + D(t)u, (2)

where x, u, v, and z represent the state vector, the control vector, the exogenous inplut

vector, and the vector to be controlled respectively. We consider the mininax problem

'XSjXo + f*. ;v*(t)R(t)v(t) dt
min max T (3)

where R(t) and V(t) are positive definite matrices and the superscript * denotes matrix

or vector transpose. Also S1 is a constant positive definite matrix. The above problem is

related to the H,, problem since the functional in (3) represents the ratio of exogenous

signal energy to the error energy. Also, the solution procedure given in the following

sections is extended in Chapter III to the case where (2) is of the form z = C(t).r +

D(t)u + E(t)v.

3. OPTIMAL SOLUTIONS

Let

).oxSjo + f" !,*(t)R(t),(t)dt

flo I*(t)w(t)z(t) dt

3
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Using (2), we can write (4) as

1 T

Jxos X0 + fT v*(t)R(t)v(t)dt
foIx*Wlx + x*w 2u + 1u*Iw 3 u} dt

Notice that the weighting matrices T1V, W 2 , and W3 are time-varying.

We will first of all maximize (4) over u for any given v(t) 0 0. Thus we need to

minimize Z;1
j{ X*wI x+ X*W2U +1 u*W 3u_ dt (6)

over u assuming that v(t) is given. From the maximum principle[ll], which in this case is

also a sufficient condition for optimality, the Hamiltonian is gi-Tn by

1 .1 .
H = -{-x*Wix + x*W 2u + -u W 3u} + i*{A(t)x + Bi(t)u + B 2(t)v}, (7)

2 2

where the adjoint variable V, satisfies

dO - H Wx + W 2u - A*!,, (8)
dt Ox

with

x(to) = xO, V/(T) = 0. (9)

Also, setting ? = 0 and assuming that W 3 is invertible for all t E [to, T],

u W (B*O - W2x). (10)

Let
A = A - B 1W'lV,

A = B 1 W1B;, (11)

c=wI - w2 wrw2 *.

Thus we have

0 b (, 
(12)
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with

X(to) = X,(T) 0. (13)

Let

(14)
0x

m (Af b'N

and

N (B 2 ) (16)

By (10) the denominator of (5) can be put in the form ¢*Q(, where Q(t) is symmetric

and positive semi-definite. The system given by (12) can be written as

M(t)( + N(t)tv, (17)

with

x(to) = xo, V,(T) = 0, (1S)

h~ki 4, icuds U, bc :,c, Lcd to 1i~iimize the cost

IxoSao ± frT i v*(t)R(t),(t)dt7XO (*(t)Q(t)((t)dt

We now state the conditions that are satisfied by an optinial z'(t)

THEOREM 1. Consider the system given by (17)-(19). If vo(t) minimizes (19). then there

exists a nonzero 77(t) (p*(t) q*(t) ) such that

d77 -Md M - AQ , (20)

dt

where p(t) and q(t) are components of the adjoint vector corresponding to x(t) and t',(t)

respectively, such that
x(to) = xo, V(T) = 0,

(21)
p(T) = 0, q(to) = 0,

5
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where 7
i 1f *x Sl x° +  f'. v1*R ld(t

A =if 2S 0  ± 2 -*J? J (22)

alI(1

vo(t) = R-1N*?. (23)

If in addition xo $ Op(to) = Six(to).

Proof. If ro(t) minimizes (19), then it also minimizes

= S - xSxo + )v*Rvdt -(A Q(dt. (24)
2 0 t -1

By the maximum principle[11], there exists an adjoint response 71(t) such that the Hamiil-

tonian

H(ij, 4, v) - V*R?, + 1A(*Q( + i,*{M1 + N?,) (25)
2 2

is nmaximized almost everywhere on [t0 , TJ by r0 (t). Satisfaction of O 0 viel(s

vo(t) = R-N*n. (26)

The adjoint variable 71 satisfies

&l OH
- - Ali - AQ(. (27)dt (

By the transversality conditions, we get the boundary conditions. I

Thus we have a two point boundary value problem given by

(Al( NRI'N*) ( () ,(28)

with
x(to) = xo, V,(T) = 0,

p(T) = 0, q(to) = 0, (29)

p(to) = Sx(to) if X0 -/ C.

We now give a criterion for the estimation of A. Notice that A = rai max,, .J(u, r)

aind gives a measure of performance of the optimal controller under worst-case conditions

corres)onding to vo(t). In the H, case, the evaluation of A wou]"' entail the ")-iteration.

6
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TiEiOu:AM 2. Let A be the smallest positive value for which the bozndary value' lnobl, i

1. en lw (2S) and (29) has a solution w (.Q( di > 0. Then A i.s" the' nniuixn

v;dle of (19), (,, il) is an optimal pair and v = R- N*t, is the worst exogcnous inj)[I t.

Proof. It is clear from Theorem 1 that if v0(t) minimizes (19). then it satisfics (2S)

and (29), with A being the minimum value of (19). Now supp)I)e ( . q) satisfies (2S) and

(29) for some A. Let v = R-N*77.

WVe have

T PT

T
= xop(to) + (NR-N* l,,I)dt

= x' p(to) + t ( ,)dt - j(K. i,)dt. (30)

Integrating the first integral in (30) by parts and making use of (29). we get

.r SI X0 + v*Ridt = A (*Q(dt. (31)

Ihlu.-, the c()st associated with v, is A. Hence, if ((,j) is a s(lution of the 1 (mmlriv \8llu(

prohlemm given by (28) and (29) for the smallest parameter \ > 0. then A is the oil ima l

valwme am1d ((, 71) is a1 optimal pair. El

Note that the bomndary value problem (28)-(29) has a soluti(o )withi a imlo iva mnimil.

,eno( minator for (19) for at most a countably infinite values of A. The em 2 g, ves a

sufficient condition for an exogenous input to be optimal. Thus. Thoemo s 1 aVd 2 give ,

complete characterization of the worst-case exogenous input.

4. COMPUTATION OF A

In this section, we consider the boundary value pro)lem given by (28) and (29) as

sumning that .r(to) / 0. Atual,gots theorv an be develled i c:.s, .r 0. )elaking se f

7
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the transition matrix, the solution of (28) can be expressed as
( .r(t) 011,(t, to) 612 (t, to) 013(t, to) 0 (t to) i/ to)

('(t)|021 (t, to) 022 (t, to - 23(t,to .(t) [,'to)
PMt~ 031(t, to 032(t, to) 633(t, to ) 0:,.1(t, to) / ,tol • (2
q(t)/ 041 (t,"o '0 '42 (t, to) 6-13 (t, to ) 6.14 (t, t, \ q(to)/

The boundary conditions given by (29) yield

0 21 (T, to) + 0 23 (T, to)Sl 0322(T, to) ,r(to) 0.(3
0 3 1(T, to) + 33 (T, to)Si 0 32(Tt 0 ) k,"(t0 =0. (33)

Let
= (021 + 23S, 022)
1= (031 + 033SI 0:12 "(34)

In view of (33) and (28)-(29), we have det ((P(T. to)) = 0 if and only if the soluti on ( (. r

of (28)-(29) is not, identically zero. Thus, we need the least positive A which makes

det ((T, t0 )) = 0 and the denominator of (19) positive. This can be obtained by doing; a

search with A over an interval on which there is a change in the sign of the dtermiiiaiit.

We found the following algorithm to be numerically more sta)le since, nulnb)ctrs of

lesser magnitude are involved in the computation of the transition matrices in (35). \Ve

have

((T) - T + t o  + to ((to)q1(T) 11 - ' k ( to

Let

221 )22
V __TT__t (36)

n 6 12 613 6/J4

t 0 ) V2 1 ,22 V23 V,24 (37)

2V(3 !"32 V'33 13.)

'/41 1 '42 143 l4

Making use of 1,(to ) S, x(to), q(to) =!'(T) = p(T) = 0, we have

( 1 4 x(T) = V 113S1 "2 r(

62 ±, q(T) i '31 + t '23SI v,2 .'(to)) (3)
6, 1 .I \ '41 + V13,S] I' 2
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The above equation has a nontrivial solution if and only if

det 1 64 ' +V 1 3 S 1  V1 2

(21 24 V21 + V23S1  V22 0. (39)
0t 1 64V 31 + v 33 S1  V3 2

S\41 64 V4 1 + v 4 3 S 1  V4 2

Thus, we need the least positive A which makes the above determinant zero.

5. SOLUTION IN TERMS OF RIccATI EQUATIONS

We now give the optimal solution in terms of solutions of two dynamic Riccati equa-

tions in the case where .-: $ 0.

TH~REM3. et =(P 1  P12 >
THEOREM 3. Let P =P 2 1 P22  be the solution of the initial value problem

+ PM + M*P + PNR-1N*P + AQ = O, (40)

P(to) = , 0 (41

If x(to) $ 0, let Z be the solution of the dynamic Riccati equation

Z+Z(A + B 2 R- 1BPI1 ) + A*Z + Z(b + B 2 R- 1 B*P 2 )Z - C 0, Z(T) 0. (42)

Then the worst-case exogenous input is given by

v = R-'B(Pl + P12Z)x, (43)

and the worst-case optimal controller is

u = W;'(B;Z - W2*)x. (44)

Proof. Letting q = P( in (28), we get (40). From (26) the worst-case exogenous input

is v = R-N*P(. If x(to) # 0, letting ' Zx, we get v = R-'B*(P1 + P12 Z).r. Also.

equations (12) and (13) yield (42). From (10), we get the worst-case optimal controller

given by (44). 0

9
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Note that the worst-case optimal control given by (44) has time-varying feedback gain

even when the linear system is time-invariant because of the presence of Z(t).

6. PERFORMANCE ROBUSTNESS

In this section we develop a formula for the variation of A when there are parameter

variations in the system matrices. Note that this expression for the variation in A takes

into account the corresponding variations in the optimal controller and the worst-exogenous

input. Usually when a controller is synthesized with respect to the nominal values of system

matrices, its gains do not change with parameter variations. Hence, later on in this section

we will derive an expression for the variation in A assuming that there is no variation of

the optimal gain matrix.

For this consider (1) and (2). Let p denote the variation in A for elemental variations

A, B1 , B 2, fC, and 6D in the matrices A, B 1, B 2 , C, and D. From equations (28) and (29)

of Section 3, we have the following boundary value problem given by

= M( + NR-'N*, (45)

= -AQ( - M*i,, (46)

with
x(to) = xo,V(T) = 0,

p(T) = 0, q(to) = 0, (47)

p(to) = Six(to) if x 0 5 0.

To simplify the derivation, let &W/, N, and 6Q be the variations in M, N, and Q owing to

the variations 6A, SB 1, SB 2 , C, and SD We now derive an expression for P in terms of the

variations WA/, 4, and 6Q.

Let (I and ?11 represent variations in ( and q owing to SM, SN, and 6Q. Let the corre-

sponding variation in A be denoted by p. We have the following set of equations that are

10
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satisfied by (I and ij:

, = M(I + NR-N*rh + 8M( + (6NR-lN* + NR-1 6N*)r, (48)

i = -AQ(- - (A Q + pQ)(- 6M77, (49)

with
xi(to) = xl0(T) = 0,

pi(T) = 0, qi(to) = 0, (50)

pl(to) = Sx1o if xo 54 0.

Note that the subscript 1 of a variable in (50) denotes the corresponding variation of that

variable.

THEOREM 4. The variation p in performance is given by

- TfT{A* ± 2f*6M*ti + 7i*(NR-iN* + NR-N*)771 dt
= .ft, *Q¢ dt

Proof. From (49), we get

j (* dt - j{A(*Q( 1 + (*M*rh1 + (*(AcQ + I'Q)( + C*6M*j} dt. (52)

Integrating the left side of (52) by parts and making use of (45) and (50), we get

*Sixio + rT q*NR- IN*l dt = j (*Q(l dtJro: fto
+ I (*(A6Q + pQ)( dt + (*6M*dt. (53)

By (46), the first integral on the right side of (53) is written as

A I (*Q( dt = - ( + M* )* (, d. (54)

An integration by parts and equations (48) and (50) yield

A j *Q( dt = xoSlxlo + IT*NR-'N*ii dt + rT*8AI dt
Jtoo

+j 7*(6NR-N* + NR-6N*)71dt. (55)

11
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Substituting (55) in (53) and simplifying, we get (51). 11

Since p given by (51) is linear in the elemental variations 6A, 6B I , 6B2, 6C, and 6D,

at least in the time-invariant case the worst degradation in performance can be easily

obtained once the range of uncertainty of the parameters is known.

Now we consider the case where xO $ 0. Assume that the state feedback controller

is determined by the nominal system matrices and is fixed. We derive a formula for the

variation of A under these conditions. Since A gives a measure of performance of the

optimal controller under worst-case conditions, we can get an idea of the degradation in

performance owing to parameter variations. Equation (44) is written as

u = Wr(BZ - W2*)x = K(t)x, (56)

where K(t) is now fixed. Let A = A + B 1 K and W = (C + DK)*W(C + DK). Equation

(1) can be written as

= A(t) + B2 (t)v, (57)

with v chosen to minimize
X*SIr0 + f,. v*Rvdt(

fox*.Vxdt

Note that
1 O + ftIvRv dt

A =min - 0Slx° (59)
ft,, x*1Vxdt

The above minimization problem yields the two-point boundary value problem

( B2R-)B2) ( (60)

x(to) = 0,/ (to) = Slxo, 3(T) = 0, (61)

where 0 is the adjoint variable and the worst exogenous input v = R-1 B;3. Let B =

B22R- B2.

12



NADC-91005-60

Let 6A,613, and 6W be the variations in A, b, and W corresponding to 6A, 6BI, 612, C,

and 6D. Note that since K(t) is fixed, 6A = 6A+6BIK. Let the variation in A be now denoted

by f. Utilizing a similar analysis as in the derivation of (51), we can get

to- f7{Ax*b{Vx + 2x*6A*O3 + 0*6013} dt

T f, xVx dt(62)

Since fi is linear in the variations, the worst degradation in the performance of the

optimal controller can be easily computed in the time-invariant case. The worst value of

j5 gives an idea of the measure of performance robustness of the optimal controll-

7. AN EXAMPLE

In order to illustrate the basic theory, we will work out a simple example. The system

is described by the equation

x=-x+u+v, x()=x0 =0, (63)

and the objective is to choose u and v such that
1 2 +1IlV2d

min max - (64)
f! ( X2 +u2)dt

is attained.

First of all, minimizing f0 (x2 + u2)dt over u(t) for a given v(t), we get

( 11 0;) 0)v, (65)

u = i, (66)

x(O) = x0,0(1) = 0, (67)

where , is the adjoint variable. Now we need to choose v to minimize

12f 1(x 2 + V,2) dt (6S)

13
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Let A be the minimum value of (68). Denoting the adjoint variables associated with x and

0, by 711 and 72 respectively, we get

- Ax+ 2, (69)
dt 7  1 7,

-=A - 7 7, (70)
dt

771(0) = x0,772(0) 0, 7'(1) 0, (71)

V = 71. (72)

Thus, we have
1 1 0 X

1 0 0 V)(74)

01 = -A) 0 1 -1 71 , 73

/2 0 -A -1 -1 72)

X(0) =XO0 (1) =0,111(0) =X0, 72(0) =0, 711( 1) 0. (74)

According to the theory of Section 3, A is the least positive value for which the boundary

value problem (73)-(74) has a nonzero solution.

Let 0 be the transition matrix of the system given by (73) at t = 1. Solving (73) and

employing the boundary conditions at t = 1, we get

0= (VI) ) F(A)( (0) (75)

where
F(A )__ 021 "+-023 022 (6

(¢31 +033 ¢32)"(6

Thus, we need the first positive A which makes det(F(A)) = 0. This value of A is 2. It can

be easily shown that with the initial condition x(0) = 0, the value of A would have been

6.1159. The case of u = cx, x(O) = 0, where c is a constant gain is solved in [7] and in this

case A = 5.6837.

Now the Hiccati equations in Theorem 3 can be easily solved to obtain the worst-case

optimal controller and the worst-case exogenous input.

14



NADC-91005-60

8. CONCLUSIONS

In this chaper we presented a solution to the finite interval worst-case state feedback

controller in terms of solutions of two dynamic Riccati equations. These equations are easy

to solve since only one of the two equations is dependent on the solution of the other. the

procedure yields optimal solutions instead of suboptimal ones normally obtained by H,

methods. Also, an expression is derived for the degradation in performance of the optimal

controller in terms of parameter variations.

15
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CHAPTER III

Worst-Case Optimal Control with a Generalized

Performance Criterion

1. INTRODUCTION

Recent state space approaches characterize suboptimal H, controllers in terms of

solutions of two Riccati equations[1-5]. Although there have been extensions of the state

space approach to cases involving nonzero initial conditions[3], time-varying systemis[4,5],

and control on a finite horizon[5], there have been virtually no attempts to characterize

the optimal solutions.

In a different approach taken by this author[6-9], the controll-r iv asbmncd to be

in feedback form and a performance measure is evaluated for any given controller. Then

nonlinear programs can be utilized to select a controller which maximizes the performance.

Although this approach yielded satisfactory controllers in several practical cases, it also

consumed excessive amounts of computational time. In [10] this approach is successfully

employed to solve a model reduction problem.

In this chapter we consider a worst-case optimal control problem with a generalized

performance criterion. We employ a new approach by considering the underlying minimax

I)rol)lem and treating the adjoint variables associated with the maximization problem as

state variables for the minimization problem. The associated performance index is comi-

Iuted in terms of the least positive value for which a certain boundary value problem has

a nontrivial solution. A simple criterion for the evaluation of the performance index is

given in Section 4. In the H, case, the evaluation of the performance index would entail

the 7-iteration. Our technique is noniterative and hence is computationally efficient. Also,

expressions for the optimal feedback controller for the nonzero initial condition case are

developed in terms of solutions of two dynamic Riccati equations. These Riccati eqiuations

16
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are easy to solve since only one equation depends on the solution of the other. In Section 6

expressions for the variation in performance of the optimal controller are derived in terms

of variations in the system matrices. Utilizing these expressions, the degradation in the

performance of the optimal controller owing to variations in the system matrices can be

easily computed. The worst degradation in the performance gives an idea of the robustness

of the proposed controller.

2. PROBLEM FORMULATION

The linear time-varying system is given by

= A(t)x + BI(t)u + B 2 (t)v, x(to) = Xo, (1)

z = C(t)x + D(t)u + E(t)v, (2)

where x, u, v, and z represent the state vector, the control vector, the exogenous input

vector, and the vector to be controlled respectively. We consider the minimax problem

m XxSl Xo + f,' -v*(t)R(t)v(t)dt 3)min max202(3

where R(t) and W(t) are positive definite matrices and the superscript * denotes matrix

or vector transpose. Also S1 is a constant positive definite matrix. The above problem

is related to the H, problem since the functional in (3) represents the ratio of exoge-

nous signal energy to the error energy. Problems where x 0 $ 0 have been considered in

[3]. However, [3] characterizes suboptimal solutions, whereas we characterize the optimal

solutions in this report.

3. OPTIMAL SOLUTIONS

Let

xoS 1 xo + f7o v*(t)R(t)v(t) dt
7Z(t)W(t)z(t) dt

17
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Us;ng (2), we can write (4) as

2 0 tXSIXo + Tf IV*(t)R(t)v(t)dt(
J(U, V)= fT {Ix*W X + x*W 2u + .u*W3U + x*W 4v + !V*W 5v ± u*W 6v} dt

Notice that the weighting matrices W1, W 2, W 3 , W 4 , W5 and W 6 are time-varying.

We will first of all maximize (4) over u for any given v(t) 0 0. Thus we need to

minimize

f 1. 1.

j{x*wlX + X*W2U + U*W3U ± X*W4V + 1v W5v + u*W6v} dt (6)
t022 2

over u assuming that v(t) is given. From the maximum principle[11], which in this case is

also a sufficient condition for optimality, the Hamiltonian is given by

1 1 1
H -{x*Wix + x*W2 u + -U*W3 U + x*W 4 v + -V*W 5V + u*W 6 v}+

2 2 2
iP*{A(t)x + BI(t)u + B 2(t)v}, (7)

where the adjoint variable V) satisfies

- - H =Wix + W 2 u + W 4 v - A*V, (8)
dt 'O

with

x(to) = xo, O(T) = 0. (9)

Also, setting 2H= 0 and assuming that W 3 is invertible for all t E [to, T],

u = W; (Bl/ - Wx - W 6 v). (10)

Let
A = A- B IW;,

B= 3 1

= W- 2 W- 1W2, (11)

G, = B2 - BI W[ 1 W 6 ,

G2 = W 4 - W 2 W;-iW 6.

is
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Thus we have

(A b) x) (G,) v, (12)

with

x(to) = x0, (T) 0. (13)

Let

(14)

((13)
M= d -A* 5

and

=( G I 16)

By (10) the denominator of (5) can be put in the form '(*Ql( + (*Q 2v + Iv*QaV, whe(,

Q1(t) and Q3(t) are symmetric and positive semi-defiinite. The system given by (12) can

be written as

M(t)( + N(t)v, (17)

wit.hI

x(to) = xo, V'(T) 0, (1S)

and v needs to be selected to minimize the cost
1 . T

xoSOx° + fo !v*(t)R(t)v(t)dt

!± *(t)Ol(t)((t) + (*O2V + ,*Q v} dt (19)

We now state the conditions that are satisfied by an optimal v(t).

TIIEOREM 1. Consider the system given by (17)-(19). Assume that R - AQ3 is inv'(rtible

for all t E [to, T]. If vo(t) minimizes (19), then there exists a nonzero q(t) = (p*(t) q*(t) )*

szch that

d77- -A *, - ,t( - AQ2 ?', (20)
dt
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where p(t) and q(t) are components of the adjoint vector corresponding to x(t) and V"(t)

respectively, such that
x(to) = xo, V,(T) == 0,

(21)

p(T) = 0, q(to) = 0,

where

A = inf - x ° S, Xo + f o  v*Rv dt (22)
Q + (*Q 2V + v*Q3l} dt

and

Vo(t) = (R - AQ3 ) - {AQ*( + N'i}. (23)

If in addition xo 5 0, p(to) = Six(to).

Proof. If vo(t) minimizes (19), then it also minimizes

j(=) °Sx°+ j v*Rvdt - A] { *Ql( + (*Q2, + v* Q3?' (it. (24)

By the maximum principlell, there exists an adjoint response 71(t) such that the Hamuil-

toxiaxi
11 *

H(,,( ,r) - ,*R +A{1(*Q 1( + Q21' + O'*Q3}+ { + X'} (23)

is mxaxiiized almost everywhere on [to, T] by zvo(t). Satisfaction of O 0 ields

vo(t) = (R - AQ) - {AQ*( + N*7,}. (26)

The adjoint variable 71 satisfies

dq OH- - - AQ1( - AQ2V. (27)

By the transversality conditions, we get the boundary conditions. II

Let

M = M + AN(R - AQ 3)-Q, (2)

N = N(R - AQ 3)-N*, (29)

20
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= -AQj - A2Q2(R - 'Q)Q*. (30)

Thus we have a two point boundary value problem given )y

with
x(to) = xo, tV(T) 0,

p(T) = 0, q(to) = 0, (32)

p(to) = Six(t,) if xo 5 0.

WC now give a criterion for the estirnation of A. Notice that A =rin, 'ixi , ,J(U .101.

a g(l gives a ineasure of performance of the optimal controller tnder w1rst -'ase coni(lit ion

corresponding to ro,(t). In the H, case, the evaluation of A would entail the -itcrati()n.

TmI-II.mr.M 2. Let A be the smallest positive value for which the hou,,darv valrue 1 nd,,li

-i Y, -(31) and (32) has a solhtiorn ((,q1) with ft{,j*Q ( + 2*Q?. ±2Q (0.

whrc I,' A (I - AQ:)1 {AQ( + N r}. Then A is the minimmi value of ( 19), (C. ,' i.s ;III

otJim pair and r = (R - AQ 3 )-' {AAQ( + N*i} is the worst exflg,(mIS il,,lit.

Proof. It is clear from Theorem 1 that if r )(t) minimizes (19). then it satisfies (31) ;mI

(32). with A being the minimum value of (19). Now suppose (C. i1) satisfies (31) and (32)

for some A. Let r = (I? - AQ3 )
- {AQ.2% + N*7}. III the following (uations ( ) (h(,t,'-w

an inner product.

We have

j ((R - AQ3 )11, = T Q* )14 L-it ( R it), d k Q2 , ,, j . 1 (A' , ,)d .( 3

By 'qmiation (17), the second integral of (33) can be written as

(N dt Ali!) dt (1,( + 3()dt. (31)
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An integration by parts and equations (20) and (29) yield

(7? + AM() t = -XS,'XO + A (Q ()dt + A Q( (2 1') dt. (3

Substituting (33) in (33), we getI Tfl
xSIxo + v*Rvdt = A {(*Q ( + 2(*Q2, + *Q,V}I. (36)

Thus, the cost associated with v is A. Hence, if ((, q) is a nontrivial solution of the lul, ,v

value problem given by (31) and (32) for the smallest paralneter A > 0. then A is the (optlimi;il

value and (C 71) is an optimal pair. 0

Note that the boundary value problem (31)-(32) has a solution with a n, viwhli,,

(lenolminator for (19) for at most a countably infinite vahes of A. Theoreiii 2 iV'vs a

su'ffii'nt condition for an exogenous input to be optimal. Thus, Theorems I and 2 giv," ;

compt)lete characterization of the worst-case exogenous input.

4. COMPUTATION OF A

In this section, we consider the boundary value probleIhm give'ii 1" :31 a, 12, ;3 -

suiming that r(to) $ 0. Analogous theory can be (evlope(l in cast, Xj 0. .I;kii't '

tie transition matrix, the solution of (31) can be expressed as

x(t) 01i(t, to) 01 2 (t, to) 013(t,t0) 61e (l,#o) ( t0 0(t 62 | (t, to) 022 (t,to ) 02.3(t, to) 62-,(t,t0) ,.(1,,3710( ) 63.1,(t,to) 0.1.2(t, to) 633(t, t0) 63-1,(1, t0) I I ) ,,)/ :
q(t) 6\ 1 , to ) 042 (t, to ) .3( t,,' ) 644 (t, t,) q( to)/

The bmn(lary conditions given by (32) yield

(62 (T, to) + 0 23 (T, to)SI 0 22 (T, to))(,r (Ia.
4'$1 (T, to) + 0 33 (T, to)S, 032(T, to) V,'(t 0 .

Let

- 2 1 -0 2 3 Si 022 
(\ 031 + ,, 3. 1 S 32 "
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In view of (38) and (31)-(32), we have det(b(T, to)) = 0 if and only if the solution ((, ,)

of (31)-(32) is not identically zero. Thus, we need the least positive A which makes

det(O(T,to)) = 0 and the denominator of (19) positive. This can be obtaied by doing a

search with A over an interval on which there is a change in the sign of the determinant.

We found the following algorithm to be numerically more stable since numbers of

lesser magnitude are involved in the computation of the transition matrices in (38). Ve

have

(4(T)) O(T T + to ),(T + to to) (0o)) (38)q/(T) 20)( 2 rq(t0)"

Let
[ f11 62 13 14'

-1(TT+to) [ 21 22 '23 '24 (41)
2 31 632 633 634

( 41 42 63 44

and
(V11 112 V113 V 1 4(T +to I

13 1 3 ,1to)3 21 V22 V23 V24 (42)2 V31 V'32 V'33 V-34

V41 1142 V143 V4 4

Making use of p(to) = S x(to), q(to) = k(T) = p(T) = 0, we have

~i~~1/1 +~ ±V 13Sm 1112(21 24 x(T) I 2 1  V 2 3Sl 1122 X(to)

31 34 q(T) V31 " + V3 3 SI 1132 (V'(t 0 )) (43)
'41 &44 \V41 + V4 3 S 1  V142

The above equation has a nontrivial solution if and only if

6 1 11 V11 + V13 S1  V12\

det 61 64 V21 + V2 3 S1  1122 =0. (44)
6 1s 64 V31 + V33S1 V32

41 44 V/41 + V4 3 SI V42

Thus, we need the least positive A which makes the above determinant zero.

5. SOLUTION IN TERMS OF RICCATI EQUATIONS

We now give the optimal solution in terms of solutions of two dynamic Riccati eqia-

tions in the case where x0 3 0.
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THEOREM 3. Let P be the solution of the initial value problem

P + PM +MI*P+PNP - L = 0, (45)

P( t°) = , ( o 0" (46)

Let
= (R-AQs)-'(AQ* + N*P) (01 02), (47)

where 01 and 01 have equal number of columns. If x(to) 50 , let Z be the solution of th,'

dynamic Riccati equation

Z+Z(A+Gi )+(A*-G 202 )Z+Z(b +GO 2 )Z-OG 2 O,=0, Z(T)=O. (4S)

Then the worst-case exogenous input is given by

v = (01 + O2Z)x, (49)

and the worst-case optimal controller is

u = W-' ((B* - w 6o2)Z- W2 - W 6o,)x. (30)

Proof. Letting 77 = P( in (31), we get (45). From (26) the worst-case exogenous input

is v = (R - AQ3 )- 1 {AQ2 + N*P)4. If x(to) j 0, letting 0/ = Zx, and utilizing (47), we get

,, = (01 +0 2Z)x. Also, equations (12) and (13) yield (48). From (10), we get the worst-case

optimal controller given by (50). 0

Note that the worst-case optimal control given by (50) has time-varying feedback gain

even when the linear system is time-invariant.

6. PERFORMANCE ROBUSTNESS

In this section we develop a formula for the variation of A when there are )arameter

variations in the system matrices. Note that this expression for the variation in A takes
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into account the corresponding variations in the optimal controller and the worst-exogenous

input. Usually when a controller is synthesized with respect to the nominal values of system

matrices, its gains do not change with parameter variations. Hence, later on in this section

we will derive an expression for the variation in A assuming that there is no variation of

the optimAl gain matrix.

For this consider (1) and (2). Let p denote the variation in A for elemental variations

&4, 6BI , 2 , C,6D, and 6E in the matrices A, B 1 ,B 2,C,D and E. From equations (31)

and (32) of Section 3, we have the following boundary value problem given by

Y +(51)

L(= - M*q, (52)

with
x(to) = xO, O(T) = 0,

p(T) = O,q(to) = 0, (53)

p(to) = SIx(to) if x0 $ 0.

Let WM, 6N, and i5L be the variations in M, N, and L owing to the variations 6A, 6Bl, 6B 2.

C, 6D, and 6E. Let the corresponding variation in A be denoted by /I.

Let A = (R - AQ3) - '. From (28)-(30), we get

.M =11 PI2, (54)

bN = J1 + J/J 2 , (55)

,- = K1 + pK 2 , (56)

where

I, = 6M + ANA;2 + AbNAQ2 + A 2 NAQ 3AQ2, (57)

12 = NAQ2 + ANAQ 3AQ*, (58)
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J, = NAWN* + &VAN* + ANA6Q3 AN*, (59)

J2 = NAQ3 AN*, (60)

Ki = - A2 {Q 2 AQ* + Q2 A6Q*} - A3 Q2 A 3 A2 (61)

K 2 = -Q 2AQ 2 AQ2 - A2Q2 AQ 3 AQ2 (62)

For the sake of simplicity, we now derive an expression for p in terms of the variations

611", 6N, 6Q 1,Q 2 , and Qa.

Let (I and ql represent variations in ( and q7 owing to &IM, QN &Qi, Q2, and 6Qa. We

have the following set of equations that are satisfied by (I and r/j:

6 = M/(l + N 7 1 +(I + zI 2 )(+ (J 1 + IIJ 2 )t,, (63)

1 = i(1 - M/*71 + (K + pK 2 )( - (I + pI2)*z1, (64)

with
x-(to) = xjo, b(T) = 0,

p1 (T) = O,ql (to) = 0, (6;5)

pi(to) = Sjxlo if xo 5 0.

Note that the subscript 1 of a variable in (65) denotes the corresponding variation of that

variable.

THIEOREM 4. Let v = A{AQ* ( + N*7.} Then the variation it in performance is given byv
fT{C(*I - 2('1;7 - ,l*J,77} dt

fo {(Ql( + 2(*Q 2v + v*Q3v} dt

Proof. From (64), we get

(j dt = {(* - C*M + (*(Ki + tK 2)( - (*(I, + jI2)*,j} dt. (67)

Integrating the left side of (67) by parts and making use of (51), (53) and (65), we getT To
-xoSIxIo - rl*9q, dt = L *LC1 dt

+ (*(K. +iK 2 )( dt - f (*(I, + 1 2)*i]dt. (68)
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By (52), the first integral on the right side of (58) is written as

it L~l dt = ( + M*z)*(i dt. (69)

An integration by parts and equations (53), (63) and (65) yield

(*~l dt = -x*Slxlo- *Nfrii dt- 77*(Ii+lI 2 )( dt- ?*(Jl+pJ2 )rldt. (70)

Substituting (70) in (68) and simplifying, we get
fT 

.

ft.{4 g1 - 2(*Ir, - q/*Jt} dt (71)

fT 7,7 j2 r+ 2,l*12 - (*K 2(} dt

A little algebra shows that the denominator of (71) equals the denominator of (66) El

Since y given by (66) is linear in the elemental variations "A, B 1 , bB 2 , 6C, 6D and 6E,

at least in the time-invariant case the worst degradation in performance can be easily

obtained once the range of uncertainty of the parameters is known.

Now we consider the case where x0 # 0. Assume that the state feedback controller

is determined by the nominal system matrices and is fixed. We derive a formula for the

variation of A under these conditions. Since A gives a measure of performance of the

optimal controller under worst-case conditions, we can get an idea of the degradation in

performance owing to parameter variations. Equation (49) is written as

u = W"-'((B* - W60 2 )Z - W -W 6 01)x = K(t)X, (72)

where K(t) is now fixed. Let A = A + BIK. Equation (1) can be written as

i = A(t) + B 2(t)v, (73)

with v chosen to minimize

~~x~S ~ro ± l0 v*RvdtT 1

f,7{lx*1Wx + x*W 2v + !v*w 3v,} dt
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Note that
mx Sixo + f+ vo 2RvdtA min fro 0xl , +(~TV v75)

fT{!xv x + X'tVWV + !v*w 3 } dt

Let Q = (R - A 3 )- 1 and

M = A + AB 2 QfW, (76)

N = B 2 B;, (77)

L = -1 _A 2 WQ *. (78)

The above minimization problem yields the two-point boundary value pioblem

X (to) = 0, #(to) = Sixo,O(T) = 0, (SO)

where 3 is the adjoint variable and the worst exogenous input v = )(B/3 + AWx).

Let 6A, B 2,60 1 ,6W 2, and 6W 3 be the variations in A, B 2 , TI1, V2 , and Ii 3 corre-

sponding to A, B 1,B 2, 6C, 6D, and bE. Note that since K(t) is fixed, 6A = 6A + 6B1 K.

Let the variation in A be now lenoted by A. Utilizing a similar analysis as in the dcrivati Oi

of (66), we can get

T fxKx- 2x*WO- *vi0 dt
fto {x*TVix + 2x*W2v+ v*17V3 v dt8)

where

ii =6bA±+A{B 2QV6+ B2 QW2±+A2 B2Q V3 QW2 *, (82)

J, = B2f~bB2 + bB2QB + AB2QV3QB, (83)

ft1 = -A I- A 2{6w2QW2* + fV2Q6W2*} - A 3W 2 Q6W3 QCW; (84)

Since is linear in the variations, the worst degradation in the performance of the

optimal controller can bc easily computed in the time-invariant case. The worst value of

ft gives an idea of the measure of performance robustness of the optimal controller.
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7. AN EXAMPLE

In order to illustrate the basic theory, we will work out a simple example. The system

is described by the equation

=-x + u + v, x(0) = Xo 0, (85)

and the objective is to choose u and v such that

2 iv dtminmax 2° 0 2 ~ (86)

lVlf uf I(x2 +u2 + 2)dt

is attained.

First of all, minimizing f1_(X2 + u2 + v 2) dt over u(t) for a given v(t), we get

(i)(0 O( ) ( V, (87)

u = 0, (88)

x(0) = x0,0(1) = 0, (89)

where Vi is the adjoint variable. Now we need to choose v to minimize

2 0+f0  2  (90)

f. (X2 + 2 + v2)dt

Let A be the minimum value of (90). Denoting the adjoint variables associated with x and

' by tl' and 772 respectively, we get

d _ 72 -Ax + 77 2, (91)
dt

2 - AV'- 77 - r/2, (92)

dt

r71(0) = x0,i12 (0) = 0, 71 (1) = 0, (93)

v - 1-7 " (94)
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Thus, we have

1 1 0 (9)0' = -A 0 1 - ; 1 (95
( 2  0 -A -1 -1 772

X(0) = X0, V)(1) =0, 711 (0) = x0',qr2(0) = 0, 771 (1) = 0. (96)

According to the theory of Section 3, A is the least positive value for which the boundary

value problem (95)-(96) has a nonzero solution.

Let q be the transition matrix of the system given by (95) at t = 1. Solving (95) and

employing the boundary conditions at t = 1, we get

0= (0) =F(A)(0)' (97)

where
F(A) 02 + 023 022 (98)

(€31 +€33 032)

Thus, we need the first positive A which makes det(F(A)) = 0. This value of A is 0.8276.

It can be easily shown that with the initial condition x(O) = 0, the value of A would have

been 0.85947. This of course is the first positive A which makes

det (022 02) -0. (99)

Now the Riccati equations in Theorem 3 can be easily solved to obtain the worst-case

optimal comroller and the worst-case exogenous input.

8. CONCLUSIONS

In this chapter we presented a solution to the finite interval worst-case state feedback

controller in terms of solutions of two dynamic Riccati equations. These equations are easy

to solve since only one of the two equations is dependent on the solution of the other. the

procedure yields optimal solutions instead of suboptimal ones normally obtained by H"

methods. Also, an expression is derived for the degradation in performance of the optimal

controller in terms of parameter variations.
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